Real-time optimization in electric vehicle stations using artificial neural networks

نویسندگان

چکیده

Abstract The current study proposes a smart decision-making algorithm to be utilized in electric vehicle stations. suggested approach emphasizes the prediction of queuing delay seeking for minimum total charging time. For this purpose, artificial neural network (ANN) model is used, where dataset pre-generated seeded into model. proposed effectiveness can proven when number arriving vehicles at station exceeds maximum points station. accuracy was recorded reach 89%. validity, ANN evaluated with respect meta-heuristic optimizer, showing reduced time by 2.5%, and 23.9% bare no optimization. As final validation step, physical realization conducted emulating as transmitting node receiving node.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real Time Drunkness Analysis Through Games Using Artificial Neural Networks

In this paper, we describe a blood alcohol content estimation prototype based on a comportment analysis performed by artificial neural networks. We asked to subjects that had drunk alcohol to play a video-game after having measured their blood alcohol content with a breathalyser. A racing game was modified so that it could provide various data related to the use of the controls by the player. U...

متن کامل

Demand Prediction and Placement Optimization for Electric Vehicle Charging Stations

Due to the environmental impact of fossil fuels and high variability in their prices, there is rising interest in adopting electric vehicles (EVs) by both individuals and governments. Despite the advances in vehicle efficiency and battery capacity, a key hurdle is the inherent interdependence between EV adoption and charging station deployment–EV adoption (and hence, charging demand) increases ...

متن کامل

Using Artificial Neural Networks to Predict Rolling Force and Real Exit Thickness of Steel Strips

There is a complicated relation between cold flat rolling parameters such as effective input parameters of cold rolling, output cold rolling force and exit thickness of strips. In many mathematical models, the effect of some cold rolling parameters has been ignored and the outputs have not a desirable accuracy. In the other hand, there is a special relation among input thickness of strips, the ...

متن کامل

Using Artificial Neural Networks to Predict Rolling Force and Real Exit Thickness of Steel Strips

There is a complicated relation between cold flat rolling parameters such as effective input parameters of cold rolling, output cold rolling force and exit thickness of strips. In many mathematical models, the effect of some cold rolling parameters has been ignored and the outputs have not a desirable accuracy. In the other hand, there is a special relation among input thickness of strips, the ...

متن کامل

rodbar dam slope stability analysis using neural networks

در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electrical Engineering

سال: 2022

ISSN: ['0948-7921', '1432-0487']

DOI: https://doi.org/10.1007/s00202-022-01647-9